Journal of Engineering Research and Reports

  • About
    • About the Journal
    • Submissions & Author Guidelines
    • Articles in Press
    • Editorial Policy
    • Editorial Board Members
    • Reviewers
    • Propose a Special Issue
    • Reprints
    • Subscription
    • Membership
    • Publication Ethics and Malpractice Statement
    • Digital Archiving Policy
    • Contact
  • Archives
  • Indexing
  • Publication Charge
  • Books
  • Testimonials
Advanced Search
  1. Home
  2. Archives
  3. 2019 - Volume 7 [Issue 2]
  4. Original Research Article

Submit Manuscript


Subscription



  • Home Page
  • Author Guidelines
  • Editorial Board Member
  • Editorial Policy
  • Propose a Special Issue
  • Membership

Analyzing and Eliminating Die Passivation Crack in a Power Leadframe Package using Submodeling Approach

  • Jefferson Talledo

Journal of Engineering Research and Reports, Page 1-6
DOI: 10.9734/jerr/2019/v7i216964
Published: 20 September 2019

  • View Article
  • Download
  • Cite
  • References
  • Statistics
  • Share

Abstract


This paper presents the submodeling approach in thermo-mechanical simulation of the die passivation crack encountered in a power leadframe package subjected to temperature cycling condition.  Without using modeling and simulation in resolving semiconductor package development issues, the process would be very costly and time-consuming. For die passivation crack, the details of the different layers of the die passivation need to be modeled and this would result in a large simulation model with considerable solution time. However, a technique known as submodeling can be used to reduce solution time without sacrificing accuracy of results. In this study, submodeling was successfully used to analyze the stresses in the critical passivation layer that resulted in the best design that eliminated the passivation crack. The modeling result showed that the crack could be eliminated by using the right passivation material layer combination and thickness. An increase in the thickness of the material layers and the additional of sublayers have provided significant stress reduction in the topmost critical passivation layer resulting in crack elimination.


Keywords:
  • Passivation crack
  • submodeling
  • thermal cycling
  • finite element analysis
  • power package.
  • Full Article - PDF
  • Review History

How to Cite

Talledo, J. (2019). Analyzing and Eliminating Die Passivation Crack in a Power Leadframe Package using Submodeling Approach. Journal of Engineering Research and Reports, 7(2), 1-6. https://doi.org/10.9734/jerr/2019/v7i216964
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver

References

Barti E, Stecher M. Using submodeling technique to understand passivation cracks in microelectronic devices. Proc. 2nd ANSA, ETA Int. Congr. 2007;241-256.

Huang M, Suo Z, Ma Q, Fujimoto H. Thin film cracking and ratcheting caused by temperature cycling. Journal of Materials Research. 2000;15(6):1239-1242.

ANSYS Manual, ANSYS Release 10.0; 2005.

Huang X, Zhu L, Nguyen B, Tran V, Isom H. Passivation stress versus top metal profiles by 3D finite element modeling. Proc CS MANTECH Conference; 2013.

He YT, Li HP, Shi R, Li F, Zhang GQ, Ernst LJ. Passivation cracking analyses of Micro-structures of IC packages. In Key Engineering Materials. 2006;324:515-518. Trans Tech Publications.

He YT, Van Gils MAJ, Van Driel WD, Zhang GQ, Van Silfhout RB, Ernst LJ. Prediction of crack growth in IC passivation layers. Microelectronics Reliability. 2004;44(12):2003-2009.

Van Silfhout RBR, van Driel WD, Li Y, van Gils MAJ, Janssen JHJ, Zhang GQ, Ernst LJ. Effect of metal layout design on passivation crack occurrence using both experimental and simulation techniques. In 5th International Conference on Thermal and Mechanical Simulation and Experiments in Microelectronics and Microsystems, 2004. EuroSimE 2004. Proceedings of the (2004, May). IEEE. 2004;69-74.

Prorok BC, Espinosa HD. Effects of nanometer-thick passivation layers on the mechanical response of thin gold films. Journal of Nanoscience and Nanotechnology. 2002;2(3-4);427-433.

Nayak R. Submodeling Technique in Stress Analysis. HCL Technologies; 2011.

Zhang XR, Zhu WH, Liew BP, Gaurav M, Yeo A, Chan KC. Copper pillar bump structure optimization for flip chip packaging with Cu/Low-K stack. In 2010 11th International Thermal, Mechanical & Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems (EuroSimE). IEEE. 2010;1-7.

Van Driel WD, Wisse G, Chang AY, Janssen JH, Fan X, Zhang KG, Ernst LJ. Influence of material combinations on delamination failures in a cavity-down TBGA package. IEEE Transactions on Components and Packaging Technologies. 2004;27(4):651-658.
  • Abstract View: 1918 times
    PDF Download: 828 times

Download Statistics

Downloads

Download data is not yet available.
  • Linkedin
  • Twitter
  • Facebook
  • WhatsApp
  • Telegram
Make a Submission / Login
Information
  • For Readers
  • For Authors
  • For Librarians
Current Issue
  • Atom logo
  • RSS2 logo
  • RSS1 logo


© Copyright 2010-Till Date, Journal of Engineering Research and Reports. All rights reserved.